Part II	Exploring Relationships Between Variables
Chapter 7	Scatterplots, Association, and Correlation
Scatterplot	Shows the relationship between two quantitative variables on the
	same cases (individuals).
is plotted on the x-axis.	Explanatory (independent/input) variable
is plotted on the y-axis.	Response (dependent/output) variable
Once we make a scatterplot, we	1. Form : straight, curved, no pattern, other?
describe association by telling	2. Direction : + or – slope?
about:	3. Strength : how much scatter {how closely points follow the form}
	4. Unusual Features: outliers, clusters, subgroups?
is a deliberately vague	Association
term describing the relationship	
between two variables. If	
positive then	increases in one variable generally correspond to increases in the
	other.
Correlation describes the	strength
and of the	direction, linear
relationship between two	
variables, without	quantitative
significant	outliers.
3 conditions needed for	1. Quantitative Variables
Correlation:	2. Straight Enough
	3. Outlier
The correlation coefficient is	finding the average product of the z-scores (standardized values).
found by	$\sum z_{i} z_{i}$
	$r = \frac{2 - \frac{1}{x - y}}{n - 1}$
It's value ranges from	$n-1$ to ± 1
, it has no, and is	-1 w ± 1
immune to changes of	scale or order
Perfect correlation r –	+1
occurs only when	± 1 the points lie exactly on a straight line
ceedrs only when	(you can perfectly predict one variable knowing the other)
No correlation r –	(you can perfectly predict one variable knowing the other)
means that knowing one	0
variable gives you	no information about the other variable
Vou should give the and	Mean
of x and y along with	Standard deviation
the correlation because	Correlation is not a complete description of two-variable data and
the conclution because	the its formula uses means and standard deviations in the z-scores
Scatterplots and correlation	the its formula uses means and standard deviations in the 2-scores.
coefficients never prove	causation
I urking variable	A variable other than x and y that simultaneously affects both
	variables accounting for the correlation between the two
To add a categorical variable to	
an existing scatternlot	use a different plot color or symbol for each category
Chapter 8	Linoor Dogrossion
Chapter o	

Regression to the mean	Because the correlation is always less than 1.0 in magnitude, each
	predicted \hat{y} tends to be fewer standard deviations from its mean than
	its corresponding x was from its mean. $(\hat{z}_y = rz_x)$
Residual	Observed value – predicted value
	$y - \hat{y}$
If positive	Then the model makes an underestimate.
If negative	Then the model makes an overestimate.
Regression line	The unique line that minimizes the variance of the residuals (sum of
Line of best fit	the squared residuals).
For standardized values	$\hat{z}_{y} = r z_{x}$
For actual x and y values	$\hat{y} = b_0 + b_1 x$
To calculate the regression line	rs.
in real units (actual x and y	1. Find slope, $b_1 = \frac{y}{r}$
values)	$\mathbf{S}_{\mathbf{X}}$
	2. Find y-intercept, plug b_1 and point (x, y) [usually (x, y)]
	into $y = b_0 + b_1 x$ and solve for b_0
	3. Plug in slope, b_1 , and y-intercept, b_0 , into $y = b_0 + b_1 x$
3 conditions needed for Linear	1. Quantitative Variables
Regression Models:	2. Straight Enough – check original scatterplot & residual scatterplot
/* same as correlation */	3. Outlier (clusters) –points with large residuals and/or high leverage
R^2	The square of the correlation, r , between x and y
	The success of the regression model in terms of the fraction of the
	variation of y accounted for by the model.
	(XX% of the variability in y is accounted for by variation in x)
<u></u> 2	(differences in x explain XX% of the variability in y)
A high R ²	Does not demonstrate the appropriateness of the regression.
Looking at a	a scatterplot of the residuals vs. the x-values.
is a good way to check the	
Straight Enough Condition.	(appropriateness)
It should be	boring: uniform scatter with no direction, shape, or outliers
The is the key to assessing	variation in the residuals
how well the model fits	
(extracts the form).	
Standard deviation of the	Gives a measure of how much the points spread around the
residuals, s_e	regression line.
$1 - R^2$	The fraction of the original variation left in the residuals.
	(The percentage of variability not explained by the regression line.)
Extrapolations	Dubious predictions of y-values based on x-values outside the range
	of the original data.
Chapter 9	Regression Wisdom
What can go wrong with	1. Inferring Causation
regression:	2.Extrapolation
	3. Outliers and Influential Points
	4.Change in Scatterplot Pattern
	5.Means (or other summaries) rather than actual data.
High leverage points	Have x-values far from \bar{x} ((\bar{x}, \bar{y}) is the fulcrum) and pull more
	strongly on the regression line.
With enough leverage the	residuals

can appear deceptively small.	
Leverage and residual produce	1) Extreme Conformers: don't influence model but do inflate R2
three flavors of outliers:	2) Large Residuals: might not influence model much but aren't
	consistent with the overall form.
	3) Influential Points: those that distort the model
Influential point	Omitting it from the data results in a very different regression model
[most menacing]	
Influential points are often	They distort the model which causes their residual to be small.
difficult to detect because	
The surest way to verify an	Calculate the regression line with and without the suspect point.
outlier and its affects is to	
A histogram of the residuals	Compliments a scatterplot of the residuals in the search for
	conditions, such as subsets, that may compromise the effectiveness
	of the regression model.
Consider comparing two or	1) Points with large residuals and/or high leverage.
more regressions if you find	2) Change in Scatterplot Pattern as a result of changes over time or
	subsets that behave differently.
Regressions based on	
summaries of the data	Tend to look stronger than the regression on the original data.
Because	Summary statistics are less variable than the underlying data.
Chapter 10	Re-expressing Data: Get It Straight!
Re-expression	A means of altering the data to achieve the conditions/structure
	necessary to utilize particular summaries or models.
Several reasons to consider a	1. Make the form of a scatterplot straighter.
re-expression:	2. Make the scatter in a scatterplot more consistent (not fan shaped).
	3. Make the distribution of a variable (histogram) more symmetric.
	4. Make the spread across different groups (boxplots) more similar.
Ladder of Powers	Orders the effects that the re-expressions have on the data
	$2 1 \frac{1}{2} 0 -\frac{1}{2} -1$
	y^2 y \sqrt{y} log y $-1/\sqrt{y}$ $-1/y$
A good starting point is	taking logs.
If all else fails	try whacking the data with two logs (log x and log y).
Base 10 logs are roughly	One less than the number of digits needed to write the number.
Re-expression limitations:	1. Can't straighten scatterplots that turn around.
	2. Can't re-express "-" data values with $\sqrt{(+\text{constant to shift} > 0)}$
	3. Minimal affect on data values far from 1-100. (-constant to shift)
	4. Can't unify multiple modes.
When discussing the accuracy	Appropriateness of the model as indicated by the residual plot
or confidence of the linear	
regression model be sure to	Success of the model as indicated by R^2
comment on both the &	